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ABSTRACT

A stochastic production-maximizing problem with transportation constraints is con-
sidered where the production rates, Ry, of man i — job j combinations are random variables
rather than constants. It is shown that for the family of Weibull distributions (of which the
Exponential is a special case) with scale parameters Ay and shape parameter 8, the plan
that maximizes the expected rate of the entire line is obtained by solving a deterministic
fixed charge transportation problem with no linear costs and with “set-up” cost matrix
AESIE

The Time-Minimizing Transportation Problem (TMTP) was treated by Barsov (1959) [2] and again
by Hammer (1969) [4] and may be stated as follows: Given a set of m origins and n destinations, where

there are a; (i=1,2, . . ., m) units available at the ith origin and §; (j=1,2, . . ., n) units required at
m n

the jth destination (such that, E a4=2 b), find a set of nonnegative variables x; (i=1,2, ..., m;
i=1 j=1

j=1,2, . . .,n) satisfying the (classical transportation-type) constraints

Sw=a  (=12,....m
i=1

@)

m
injzbj (j=1.2,.. swi1B)
i=1

and minimizing the greatest of the given nonnegative numbers t; for which x; > 0.

The t; may be interpreted as the time required to transport a positive load x; (however big or
small) from the ith origin to the jth destination. Thus the problem is to find a transportation plan which
makes the most time-consuming trip as short as possible.

In a production context the analogous problem will be to consider the rate of production, Ry,
instead of the time t;, and to seek a production plan X = {x;;} satisfying (1) and maximizing the smallest
of the given nonnegative rates R; for which x; > 0. The Ry’s are now interpreted as the rate of pro-
duction (on a production line, say) of a man belonging to group (origin) ¢ when he is assigned to job
(destination) j. As above, there are a; men available in the ith group and b; men required for the jth
job.

429



430 U. YECHIALI

For any production plan X that satisfies (1) let 4x= {(i)|x; > 0}. For any such plan, the rate of
production of the entire line, R, will be given by

(2) R =Minimum (Ry)
X

(ij)ed

and the problem is then to find a plan for which R is as large as possible.

Now, suppose that for each man i—job j combination, the corresponding Rj; is not a constant,
but a continuous nohnégative random variable with distribution function Fi;(+). This implies that, for
any plan X, R (as given by (2)) is also a random variable. Our objective then is to find a production
plan that will maximize the expected rate of production of the line, i.e., we seek a plan X satisfying (1)

so as to achieve

(3) M}?x{E [R]}= fo{E[NIiUr;ji):?um (Ri)1}.

Assuming that the Ri’s are independent random variables with finite means, the distribution
function of R, Fx(*), is found to be

Fr(r)=1— 11 [1-Fy;(n)],
(iedy

and the expected rate of production is given by

E[R}=r{ 5| [1—Fij(r)]}dr.

0 C(ijledy

Now consider the family of Weibull distributions where R; has a scale parameter A\; >0 and
shape parameter 8> 0 (equal for all man-job combinations). In this case, the distribution function of
Ri_; is

) Fij(r)=1—exp (—Ayr®), r=0.

We consider also the following “Fixed Charge Transportation Problem” (FCTP) with no linear costs:
Given\;; >0(@=1,2, . . .,m;j=1,2, . . .,n)find a plan X satisfying (1) so as to achieve

(ij)edy
We now show the following:
THEOREM: The solution to the stochastic production-maximizing transportation problem (3)
is given by the solution of the FCTP (5).
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PROOF: For any given plan X we obtain:

(6) E[R] =f exp{—( > )\ij)rﬂ}dr
: 9 (ifledy
) Y
={———] Tl=+1),
( > Ay B
(U)EAX
where I'(+) denotes the Gamma function. It is clear that E[R] in (6) is maximized whenever ' Ay
(ij)ed y
is minimized. This completes the proof.

By letting 8=1 in (4) it is readily seen that the exponential family of distributions is a special
case of the family of Weibull distributions. Note also that if we let m=n and a;=b6;=1 for all i and j
then the deterministic and stochastic production-maximizing problems are transformed, respectively,
into the classical [3] and stochastic [6] bottleneck assignment problems, whereas the FCTP [1] is
transformed into the assignment problem.

In general, fixed charge problems have proven difficult to solve, primarily because each extreme
point (here a basic solution of (1)) of the convex set of feasible solutions is a local optima. In our case,

however, a direct way to solve the FCTP would be to enlarge it into an assignment problem of order

m n
( 2 a; ) X ( b; )
i=1 j=1

Another approach could be to formulate the FCTP as an all-integer linear program [1]. A third method
would employ a branch and bound algorithm as presented in [5]; however, for large problems all of
the above methods would eventually bezome inefficient, and an approximative procedure (such as the
one suggested in [1]) seems to be more practical. Additional references for approximative methods
may be found in [5].

In summary, we have shown that the plan that maximizes the expected production rate of the entire
line in a randomized production-maximizing transportation problem can be found by solving a deter-
ministic fixed charge transportation problem with no linear costs and with fixed-charge cost matrix
Ii;] whose entries are the scale parameters of the random variables R;;.
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